
Internet Appendix for Default Risk and the
Pricing of U.S. Sovereign Bonds1

A TIPS, Nominal Treasuries, and CDS

Our empirical analysis focuses on four financial instruments: inflation-indexed Treasury notes

(TIPS), nominal Treasury notes, credit default swaps on the U.S. Treasury (CDS), and

inflation-indexed swaps (ILS). In this section we discuss the zero-coupon arbitrage in ILS,

nominal, and inflation-protected Treasuries, an analogue to the coupon-based strategy detailed in

Fleckenstein, Longstaff and Lustig (2014). We also discuss institutional features of these securities

as well as CDS, and how these might relate to the profitability of the arbitrage strategy.

The two primary instruments of debt issuance for the U.S. government are cash-denominated

Treasuries (nominal) and Treasury inflation-protected securities (TIPS). Nominal zero-coupon

bonds pay their nominal face value to the bond-holder at maturity. In contrast, zero-coupon

TIPS holders earn the inflation-adjusted face value of the bond at maturity. Since cumulative

inflation tends to be positive, TIPS tend to trade at a premium compared to nominal bonds. For

both nominal bonds and TIPS, yields at issuance are determined through an auction process

involving numerous market participants. According to Treasury Direct, as of April, 2020, the

total principal value of Treasury securities outstanding is $18,104 billion, of which $1,493 billion,

or 8% are TIPS. The dollar amount of TIPS outstanding is comparable in magnitude to each of

the respective markets for asset-backed securities, federal agency securities, and U.S. money

market instruments.2

The TIPS inflation adjustment is computed using the seasonally non-adjusted consumer price

index for all urban consumers in the U.S. (CPI-U). CPI data is published monthly by the Bureau

of Labor Statistics with a lag of about one and a half months, making the realized inflation

unavailable when TIPS mature. TIPS payments thus include an indexation lag — the index used

to determine their cashflows is a linear interpolation of CPI-U observed between two and three

1Dittmar, Robert, Alex Hsu, and Guillaume Roussellet, Internet Appendix to “Default Risk and the
Pricing of U.S. Sovereign Bonds,” Journal of Finance [DOI STRING]. Please note: Wiley is not responsible
for the content or functionality of any supporting information supplied by the authors. Any queries (other
than missing material) should be directed to the authors of the article.

2https://www.sifma.org/resources/research/fixed-income-chart/
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months before. The inflation-adjusted principal paid back at maturity is calculated by

multiplying the face value of the bond by the cumulative index ratio. TIPS embed a deflation

floor, such that they return the full face value even if cumulative inflation realized over the bond

lifetime is negative.3

Despite the indexation lag, it would be difficult for the U.S. government to inflate away

outstanding TIPS. Technically, it would be possible for the sovereign to resort to seignoriage to

pay back maturing TIPS and current coupon payments without realizing the consequence of

increased inflation. However, the inflation adjustment will materially impact any remaining

outstanding TIPS, increasing the future interest payments of the government. Should the U.S.

government refuse to honor the TIPS indexation, this would likely trigger a credit event and force

the payoff of U.S. CDS contracts (see below). In case of default, nominal bonds and TIPS have

the same level of seniority.

Leaving aside the embedded deflation floor, TIPS can be theoretically replicated by combining

nominal bonds and inflation-linked swaps (ILS), as shown in Fleckenstein, Longstaff and Lustig

(2014). ILS allow for the buyer to earn cumulative inflation in exchange for a fixed rate, relative

to the notional agreed upon at inception. Inflation swaps are costless to write, and they are

typically zero-coupon. As of April 2012, the average daily brokered inflation swap activity was

estimated to be $350 million, concentrated around the 10-year maturity. Importantly, despite a

low trading frequency averaging about 2.2 contracts per day, the market for inflation swaps

appears fairly liquid, with bid-ask spreads from proprietary data averaging below 3 basis points.4

Keeping with the standard for swap contracts, ILS are collateralized, thus subject to minimal

counterparty risk. In the remainder of the paper, we will assume that ILS are virtually risk-free.

In a frictionless economy, for a given maturity n, no arbitrage implies that the zero-coupon ILS

rate is equal to the spread between the nominal and TIPS zero-coupon yields, called breakeven

inflation rate (BEI):

ILS
(n)
t = R

(n)
t −R

(n)∗

t = BEI
(n)
t . (12)

This measure is the zero-coupon equivalent of Fleckenstein, Longstaff and Lustig (2014), who

3We consider zero coupon bonds in this study. Note however that most of nominal bonds and TIPS issued
by the U.S. sovereign are coupon bonds paying on a semi-annual basis, but TIPS are only issued in terms
of five, ten, twenty, or thirty years. For TIPS coupon payments, the coupon rate is fixed and paid on the
inflation adjusted principal. For coupon payments, there is no deflation floor and the inflation-adjustment
is computed using the index ratio realized over the last 6 months.

4https://libertystreeteconomics.newyorkfed.org/2013/04/how-liquid-is-the-inflation-swap-market.

html and JPMorgan Investment Insight: Inflation Derivatives.
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show that the cash flows of any traded nominal Treasury bond can be replicated by a portfolio of

TIPS, U.S. Treasury STRIPS, and inflation swaps. We equivalently call this spread ILSBEI,

mispricing, or hedged breakeven.

In practice, researchers have observed large deviations from this no-arbitrage relationship over the

maturity spectrum. Figures 1 and 2 present the five years to maturity series of ILS and BEI and

the term structure of the spread between inflation swap rates and zero-coupon BEI, respectively.

These deviations from the no-arbitrage relationship are quite persistent, and average between 30

and 36 basis points depending on the maturity. In the midst of the crisis, they reached more than

200 basis points.

Most of this apparent mispricing has been previously attributed to the low liquidity of TIPS

relative to nominal bonds and ILS or to slow-moving capital (see e.g. D’Amico, Kim and Wei

(2018) or Fleckenstein, Longstaff and Lustig (2014)). Campbell, Shiller and Viceira (2009)

suggest the premium is related to the cost of supplying inflation protection and is typical under

normal market conditions. Inflation swaps, Treasuries, and TIPS all trade over-the-counter and

may be subject to varying liquidity risk or counterparty credit risk in the case of ILS. We argue

that the ILSBEI spread is also significantly related to the risk of default of the U.S. sovereign that

we associate with U.S. CDS. In our analysis, we control for all these potential confounding factors

in the analysis, and abstract away from the embedded deflation floor in TIPS and the tax-related

issues. We note that the deflation floor drives the price of TIPS upward, making the observed

TIPS yield lower than the one used in the no-arbitrage argument. This would lead us to

underestimate the ILSBEI spread, thus the size of the potential mispricing.

Credit default swaps (CDS) are OTC instruments designed to protect bond investors from a

contingent credit event of the issuing entity. In practice, a bond investor (protection buyer)

entering a CDS agrees to pay a fixed premium, typically called the CDS spread, on a regular basis

to the protection seller, her counterparty. In case of a credit event, the contract terminates and

the seller has to deliver the loss given default (LGD) realized on the bond to the buyer, making

her earn the entire face value of the bond upon default. As is standard for swap contracts, the

premium is indexed on a notional amount agreed upon at inception and is set such that the

original cost of issuance is zero. While not free from counterparty credit risk, CDS are typically

collateralized.

The International Swaps and Derivatives Association (ISDA) provides legal details that define the

triggers for the termination of CDS, which type of obligations are considered, and how the LGD
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and repayment operates depending on the underlying bond issuer (see ISDA (2003, 2014)). In the

case of the United States Treasury, a credit event is observed whenever the government either (i)

fails to repay, (ii) repudiates or imposes a moratorium, or (iii) restructures any of its borrowed

money. This includes in particular any Treasury Bill, Bond or Note, whether nominal or indexed.

In our empirical analysis, we identify default with the conditions for which CDS protection are

triggered.

In the case of a credit event, the LGD is determined through an auction addressed to CDS dealer

banks. Participating banks typically submit a bid and ask quote on a $100 face-value bond of the

reference entity, and the cross-section of bid-asks is used to determine the final price of the bond,

typically below par (see Augustin et al. (2014)).5

Settlement of the CDS contract can be completed either through cash or physical delivery. In the

former case, the protection seller delivers a payment equal to the LGD as determined by the

auction, multiplied by the notional of the CDS. In the latter case, the protection seller pays the

entire notional to the buyer in exchange for an equivalent principal amount of reference bonds. If

these bonds have the exact same characteristics as those auctioned, the two deliveries would be

equivalent. However, the protection buyer can choose to exchange any of her reference bonds with

maturity below 30 years and above the maturity of the CDS contract. This essentially embeds a

cheapest-to-deliver (CtD) option to the buyer’s position, who will likely deliver the lowest dollar

price reference obligation available.6

U.S. CDS contracts fall under the “Big Bang Protocol” established by ISDA in 2009. In the

aftermath of the financial crisis, as the primary industry body overseeing swaps and derivative

trading, ISDA pushed swap market participants to adopt the new protocol in an effort to

standardize over-the-counter contract parameters.7 A number of the implemented changes are

worth highlighting. First, coupon payments on each contract are fixed at either 100 (investment

grade) or 500 basis points (non-investment grade). As a result, there is typically a payment to be

made at the initiation of the contract to ensure that the present values of expected cash flows are

5The final price of the bond resulting from this auction is published by CreditEx (http://www.
creditfixings.com/CreditEventAuctions/results.jsp).

6In the context of the Greek crisis, CDS contracts and the associated auction mechanism played a minor
role in the resturcturing process. As highlighted by Zettelmeyer, Trebesch and Gulati (2013), the credit event
was triggered only after the preemptive debt restucturing. Therefore, the CDS auction took place after the
bond exchange, and the resulting auction price fell in place with the new bond price in the secondary market.
To be certain, CDS coverage of Greek sovereign debt was very low, at less than 2%. One would not expect
the outcome of the bond auction to dictate terms of the restructuring.

7BIS Quarterly Review, December 2010. “The Big Bang in the CDS Market”
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equal between the buyer’s and seller’s legs. A second important change stemming from the

protocol is the hardwiring of the auction process following credit events such that all protection

buyers obtain fair cash payments from protection sellers. Third, the protocol further stipulates

the creation of Determinations Committees for determining whether a credit or succession event

has occurred in order to reduce disputes between counterparties in case there is ambiguity.

Market participants in the sovereign CDS market include security dealers, banks and other

financial institutions, and hedge funds (see e.g. Augustin (2018)). There is evidence that

sovereign CDS contracts are used in both a hedging and speculative context. For contracts

specifically written on the U.S. sovereign, focusing on the most liquid contracts with five years to

maturity, price data from Markit shows there is very little pricing movement before the financial

crisis of 2008. The premium spiked in 2009, at the height of the crisis, to about 100 basis points

and has remained elevated afterward between 20 to 40 basis points.

Chernov, Schmid and Schneider (2020) provide a detailed discussion on the determinants of U.S.

sovereign CDS spread beyond credit risk. For instance, the majority of U.S. CDS contracts are

denominated in euros, and there is a small foreign exchange premium embedded in the spread.

U.S. dollar denominated contracts did not start trading until August 2010 and volumes are thin

relative to euro contracts. Additionally, there is uncertainty in the cheapest-to-deliver option due

to the bond auction protocol conditional on default occurring. Lastly, the U.S. CDS spread

should contain a liquidity premium component due to the relative scarcity of the instrument

compared to other sovereign CDS contracts. A combination of these factors contribute to the U.S.

sovereign CDS premium.

In the context of our project, we use the U.S. sovereign CDS premium as the indicator of the

market’s beliefs about default risk. We recognize that non-credit risk-related factors may

influence the pricing of CDS. In the next section, we detail our approach to this issue and present

several robustness tests in the Appendix to rule out the possibility these non-credit risk-related

factors can simultaneously generate differential prices in U.S. sovereign bonds.
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B Proofs in the simple model

B.1 Model

We assume the following specification for the pricing kernel and inflation dynamics:

logM∗
t+1 = M + Λδ · 1

{
δ
(c)
t+1 > 0

}
,

πt+1 = κ0 + κy · λt + κδ · 1
{
δ
(c)
t+1 > 0

}
,

(13)

where δ
(c)
t+1 is a non-negative process with conditional jump probability λt.

B.2 One-period pricing

Riskless securities: We calculate the price of a riskless real bond first.

D
(1)∗

t = Et

(
M∗

t+1

)
= λt · E

(
M∗

t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt) · E

(
M∗

t+1

∣∣ δ(c)t+1 = 0
)

= λt · eM+Λδ + (1− λt) · eM

= eM ·
[
1 + λt

(
eΛδ − 1

)]
. (14)

This means the one-period yield is approximately given by:

r
(1)∗

t ∼
λt→0

−M − λt

(
eΛδ − 1

)
∼ −M − Λδλt (15)

In the same spirit, nominal bond prices can be obtained as:

D
(1)
t = Et

(
M∗

t+1e
−πt+1

)
= λt · E

(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt) · E

(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 = 0
)

= λt · eM−κ0−κyλt+Λδ−κδ + (1− λt) · eM−κ0−κyλt

= eM−κ0−κyλt
[
1 + λt

(
eΛδ−κδ − 1

)]
(16)
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The corresponding yield is given by:

r
(1)
t ∼

λt→0
−M + κ0 + λt

[
κy −

(
eΛδ−κδ − 1

)]
∼ −M + κ0 + (κy + κδ − Λδ)λt (17)

Thus we can obtain ILS rates as:

ILS
(1)
t ∼

λt→0
κ0 + λt

[
κy + eΛδ

(
1− e−κδ

)]
∼ κ0 + (κy + κδ)λt . (18)

Defaultable treasuries: Let us turn now to risky securities. Let us assume the loss given

default of TIPS is given by LGD∗. The price of a risky real treasury is given by:

B
(1)∗

t = λt · (1− LGD∗) · E
(
M∗

t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt) · E

(
M∗

t+1

∣∣ δ(c)t+1 = 0
)

= D
(1)∗

t − λt · LGD∗ · E
(
M∗

t+1

∣∣ δ(c)t+1 > 0
)

= D
(1)∗

t

1− λt · LGD∗ ·
E
(
M∗

t+1

∣∣ δ(c)t+1 > 0
)

D
(1)∗

t


= D

(1)∗

t

[
1− λt · LGD∗ · eΛδ

1 + λt (eΛδ − 1)

]
= eM ·

[
1 + λt

(
eΛδ − 1

)
− λtLGD∗eΛδ

]
= eM ·

[
1 + λt

(
[1− LGD∗] eΛδ − 1

)]
(19)

Again, the yield is given by:

R
(1)∗

t ∼
λt→0

−M − λt

(
[1− LGD∗] eΛδ − 1

)
∼ −M − Λδλt + (1 + Λδ) LGD∗ · λt (20)

The real credit spread is then given by

R
(1)∗

t − r
(1)∗

t ∼ λt · eΛδ · LGD∗ (21)

Similarly, the price of a risky nominal treasury whose loss given default is denoted by LGD is
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given by:

B
(1)
t = λt · (1− 1− LGD) · E

(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt) · E

(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 = 0
)

= D
(1)
t − λt · LGD · E

(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 > 0
)

= D
(1)
t

1− λt · LGD ·
E
(
M∗

t+1e
−πt+1

∣∣ δ(c)t+1 > 0
)

D
(1)
t


= D

(1)
t

[
1− λt · LGD · eΛδ−κδ

1 + λt (eΛδ−κδ − 1)

]
= eM−κ0−κyλt+

σ2
m+σ2

π
2

[
1 + λt

(
eΛδ−κδ − 1

)] [
1− λt · LGD · eΛδ−κδ

1 + λt (eΛδ−κδ − 1)

]
= eM−κ0−κyλt

[
1 + λt

(
eΛδ−κδ − 1

)
− λt · LGD · eΛδ−κδ

]
= eM−κ0−κyλt

[
1 + λt

(
[1− LGD] · eΛδ−κδ − 1

)]
. (22)

The corresponding yield is given by:

R
(1)
t ∼

λt→0
−M + κ0 + λt

[
κy −

(
[1− LGD] · eΛδ−κδ − 1

)]
∼ rt + (1 + Λδ − κδ) · LGD · λt

(23)

and the nominal credit spread is given by:

R
(1)
t − r

(1)
t = λt · eΛδ−κδ · LGD (24)

The BEI and ILS-BEI spreads are respectively given by:

BEI
(1)
t ∼ κ0 + λt

[
κy + eΛδ

(
1− LGD∗ − [1− LGD] · e−κδ

)]
(25)

ILSBEI
(1)
t ∼ λt · eΛδ

[
LGD∗ − e−κδLGD

]
(26)

B.3 Multi-period pricing with independence

To keep things simple, we assume that the default probability is fixed through time and that we

draw the default process independently every period. We relax this assumption later.

Following our assumption, it is easy to see that the price of bonds is fixed through time as long as

the entity is alive. Thus, it is easy to obtain the complete pricing recursions.
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Riskless bonds: Let us consider inflation-indexed bonds first. We have:

D
(n)∗

t =
(
λt · eΛδ + 1− λt

)
Et

[
eMD(n−1)∗

]
= enM ·

[
1 + λt

(
eΛδ − 1

)]n
(27)

therefore:

r
(n)∗

t = −M − log
[
1 + λt

(
eΛδ − 1

)]
(28)

Similarly, for nominal riskless bonds, we have:

D
(n)
t =

(
λt · eΛδ−κδ + 1− λt

)
Et

[
eM−κ0−κyλtD(n−1)

]
= en(M−κ0−κyλt) ·

[
1 + λt

(
eΛδ−κδ − 1

)]n
. (29)

therefore:

r
(n)
t = −M + κ0 + κyλt − log

[
1 + λt

(
eΛδ−κδ − 1

)]
(30)

The ILS is then given by:

ILS
(n)
t = κ0 + κyλt + log

[
1 + λt

(
eΛδ − 1

)
1 + λt (eΛδ−κδ − 1)

]
∼ κ0 + κyλt + λt · eΛδ

(
1− e−κδ

)
(31)

Risky bonds: Using the same logic, risky bond yields can be obtained as follows.

B
(n)∗

t =
(
λt · eΛδ (1− LGD∗) + 1− λt

)
Et

[
eMB(n−1)∗

]
= enM ·

[
1 + λt ·

(
eΛδ (1− LGD∗)− 1

)]n
. (32)

Thus:

R
(n)∗

t = −M − log
[
1 + λt ·

(
eΛδ (1− LGD∗)− 1

)]
(33)

Similarly:

B
(n)
t =

(
λt · eΛδ−κδ (1− LGD) + 1− λt

)
Et

[
eM−κ0−κyλtB(n−1)

]
= en(M−κ0−κyλt) ·

[
1 + λt

(
(1− LGD) eΛδ−κδ − 1

)]n
. (34)
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therefore:

R
(n)
t = −M + κ0 + κyλt − log

[
1 + λt

(
(1− LGD) eΛδ−κδ − 1

)]
(35)

and the BEI and ILSBEI spreads are given by:

BEI
(n)
t = κ0 + κyλt + log

[
1 + λt

(
(1− LGD∗) · eΛδ − 1

)
1 + λt ((1− LGD) · eΛδ−κδ − 1)

]
∼ κ0 + κyλt + λt · eΛδ

(
1− LGD∗ − (1− LGD) · e−κδ

)
(36)

and:

ILSBEI
(n)
t ∼ λt · eΛδ

[
LGD∗ − e−κδLGD

]
(37)

B.4 Absorbing Default Process

We now consider that the effects of a default can be permanent. In other words, the conditional

probability λt given a default occurring today is equal to 1. Notice that this assumption does not

modify the one-period yields, but only affects the multi-period ones.

Riskless yields: We focus on inflation-indexed bonds first. We have a tree of outcomes. With

probability (1− λt)
n, the sovereign stays alive for n periods. Otherwise the sovereign default

exactly at t+ k + 1 with probability (1− λt)
kλt. In this case, since the default state is absorbing,

both the SDF and the inflation rate jump by Λδ and κδ, respectively, and for the remaining n− k

period. Putting all together we have:

D
(n)∗

t = (1− λt)
n enM +

n−1∑
k=0

(1− λt)
k λte

nM+Λδ(n−k)

= enM

[
(1− λt)

n + λte
nΛδ

n−1∑
k=0

(1− λt)
k e−kΛδ

]

= enM
[
(1− λt)

n + λte
nΛδ

1− (1− λt)
n e−nΛδ

1− (1− λt) e−Λδ

]
= enM

[
(1− λt)

n

(
1− λt

1− (1− λt) e−Λδ

)
+

enΛδλt

1− (1− λt) e−Λδ

]
= enM

(1− λt)
n+1 (1− e−Λδ

)
+ enΛδλt

1− (1− λt) e−Λδ
(38)
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and, for nominal bonds:

D
(n)
t = (1− λt)

n en(M−κ0−κyλt) +
n−1∑
k=0

(1− λt)
k λte

n(M−κ0)−nκyλt−(n−k−1)κy(1−λt)+(n−k)(Λδ−κδ)

= en(M−κ0−κyλt)

[
(1− λt)

n + λte
n(Λδ−κδ)−(n−1)κy(1−λt)

n−1∑
k=0

(1− λt)
k ekκy(1−λt)−k(Λδ−κδ)

]

= en(M−κ0−κyλt)

[
(1− λt)

n + λte
n(Λδ−κδ)−(n−1)κy(1−λt) 1− (1− λt)

n enκy(1−λt)−n(Λδ−κδ)

1− (1− λt) eκy(1−λt)−(Λδ−κδ)

]

= en(M−κ0−κyλt)

[
(1− λt)

n + λt · eκy(1−λt) e
n(Λδ−κδ−κy(1−λt)) − (1− λt)

n

1− (1− λt) e−(Λδ−κδ−κy(1−λt))

]
(39)

Defaultable bonds: We use recursive computations for defaultable bonds. Starting with

TIPS, we have:

B
(n)∗

t = λt · Et

(
M∗

t+1 · (1− LGD∗) ·B(n−1)∗

t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt)Et

(
M∗

t+1B
(n−1)∗

t+1

∣∣ δ(c)t+1 = 0
)

= eM
[
λt · (1− LGD∗) · eΛδ · Et

(
B

(n−1)∗

t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt)Et

(
B

(n−1)∗

t+1

∣∣ δ(c)t+1 = 0
)]
(40)

Notice that the only source of time variation in the price is potentially λt+1, which can take 2

values. Conditionally on whether default has happened at t+ 1 the future price is known. Thus,

we can write B
(n−1)∗

t+1 =: f∗
n−1(λt+1). We obtain:

B
(n)∗

t = f∗
n(λt) = eM

[
λt · (1− LGD∗) · eΛδ · f∗

n−1(1) + (1− λt) f
∗
n−1(λt)

]
(41)

starting from f∗
0 (λt) = 1. Since our model is a binomial tree with absorbing states, each price will

be of the form:

f∗
n(λt) = enM

[
λt

n−1∑
k=0

a∗n,k (1− λt)
k + a∗n,n (1− λt)

n

]
We thus obtain the following recursion:

a∗n,k = a∗n−1,k−1 for k > 0

a∗n,0 = a∗n−1,0 · (1− LGD∗) · eΛδ
(42)

Starting from initial conditions a∗0,0 = 1, we obtain:

a∗n,k = a∗n−1,k−1 = . . . = a∗n−k,0 = (1− LGD∗)n−k · e(n−k)Λδ for all k ⩽ n (43)
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Thus, we obtain:

B
(n)∗

t = enM

[
λt

n−1∑
k=0

(1− LGD∗)n−k · e(n−k)Λδ (1− λt)
k + (1− λt)

n

]
(44)

Using the same manipulation as for riskless bonds, we obtain:

B
(n)∗

t = enM
(1− λt)

n+1
(
1− (1− LGD∗)−1 · e−Λδ

)
+ (1− LGD∗)n · enΛδλt

1− (1− λt) (1− LGD∗)−1 · e−Λδ
(45)

We can also derive nominal bond prices in the same way.

B
(n)
t = λt · Et

(
M∗

t+1e
−πt+1 · (1− LGD) ·B(n−1)

t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt)Et

(
M∗

t+1e
−πt+1B

(n−1)
t+1

∣∣ δ(c)t+1 = 0
)

= eM−κ0−κyλt

[
λt · (1− LGD) · eΛδ−κδ · Et

(
B

(n−1)
t+1

∣∣ δ(c)t+1 > 0
)
+ (1− λt)Et

(
B

(n−1)
t+1

∣∣ δ(c)t+1 = 0
)]

Again, denoting by B
(n)
t =: fn(λt), we have

B
(n)
t = eM−κ0−κyλt

[
λt · (1− LGD) · eΛδ−κδ · fn−1(1) + (1− λt) fn−1(λt)

]
(46)

where

fn(λt) = en(M−κ0−κyλt)

[
λt

n−1∑
k=0

an,ke
bn,k(1−λt) (1− λt)

k + an,n (1− λt)
n

]
Developing the recursions, we obtain:

an,k = an−1,k−1 for k > 0

an,0 = an−1,0 · (1− LGD) · eΛδ−κδ

bn−k = −(n− k − 1)κy

(47)

Starting from a0,0 = 1, we have:

an,k = (1− LGD)n−k · e(n−k)(Λδ−κδ) (48)
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Thus we have:

B
(n)
t = en(M−κ0−κyλt)

[
λt

n−1∑
k=0

(1− LGD)
n−k · e(n−k)(Λδ−κδ)e−(n−k−1)κy(1−λt) (1− λt)

k
+ (1− λt)

n

]

= en(M−κ0−κyλt)

[
(1− LGD)

n · en(Λδ−κδ−κy(1−λt))+κy(1−λt)λt

n−1∑
k=0

(1− λt)
k(

(1− LGD) eΛδ−κδ−κy(1−λt)
)k + (1− λt)

n

]

= en(M−κ0−κyλt)

[
(1− λt)

n
+ eκy(1−λt)λt

(1− LGD)
n · en[Λδ−κδ−κy(1−λt)] − (1− λt)

n

1− (1− λt) (1− LGD)
−1

e−[Λδ−κδ−κy(1−λt)]

]
(49)

Though complicated, the ILSBEI spread is available in closed-form and does not depend on M .

We hereby derive the pricing formulas under the expectation hypothesis to obtain the risk

premium. We start with the real riskfree bonds. We have:

D
(1)∗

t,EH = e−r
(1)∗
t = eM

[
1 + λt

(
eΛδ − 1

)]
D

(2)∗

t,EH = e−r
(1)∗
t Et

[
e−r

(1)∗
t+1

]
= e−r

(1)∗
t · eM · Et

[
1 + λt+1

(
eΛδ − 1

)]
= e−r

(1)∗
t ·

[
λt · eM+Λδ + (1− λt)D

(1)∗

t,EH

]
where the last row is obtained by separating what happens to the short-term rate in case of

default and non-default. Following the recursion, we can easily show that:

D
(n)∗

t,EH = e−r
(1)∗
t

[
λte

(n−1)(M+Λδ) + (1− λt)D
(n−1)∗

t,EH

]
. (50)

In the same spirit, we can derive the recursions for the nominal riskless bonds:

D
(1)
t,EH = e−r

(1)∗
t Et

(
e−πt+1

)
= eM−κ0−κyλt

[
1 + λt

(
eΛδ − 1

)] [
1 + λt

(
e−κδ − 1

)]
D

(2)
t,EH = e−r

(1)∗
t Et

[
e−πt+1D

(1)
t+1,EH

]
= e−r

(1)∗
t −κ0−κyλtEt

[
e
−κδ1

{
δ
(c)
t+1>0

}
−r

(1)∗
t+1 −κ0−κyλt+1

[
1 + λt+1

(
e−κδ − 1

)]]
= e−r

(1)∗
t −κ0−κyλt ·

[
λt · eM+Λδ−κ0−κy−2κδ + (1− λt)D

(1)
t,EH

]
Following the recursion again, we obtain:

D
(n)
t,EH = e−r

(1)∗
t −κ0−κyλt

[
λte

(n−1)(M+Λδ−κ0−κy)−nκδ + (1− λt)D
(n−1)
t,EH

]
. (51)
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Similarly, for defaultable bonds:

B
(1)∗

t,EH = e−r
(1)∗
t (λt [1− LGD∗] + 1− λt) = eM

[
1 + λt

(
eΛδ − 1

)]
[1− λtLGD∗]

B
(2)∗

t,EH = e−r
(1)∗
t Et

[(
1
{
δ
(c)
t+1 > 0

}
(1− LGD∗) + 1

{
δ
(c)
t+1 = 0

})
B

(1)∗

t+1,EH

]
= e−r

(1)∗
t

[
λt (1− LGD∗) eM+Λδ (1− LGD∗) + (1− λt)B

(1)∗

t,EH

]
Thus, we obtain:

B
(n)∗

t,EH = e−r
(1)∗
t

[
λt (1− LGD∗) e(n−1)(M+Λδ) + (1− λt)B

(n−1)∗

t,EH

]
. (52)

and for nominal bonds:

B
(1)
t,EH = e−r

(1)∗
t Et

(
e−πt+1

(
1
{
δ
(c)
t+1 > 0

}
(1− LGD) + 1

{
δ
(c)
t+1 = 0

}))
= e−r

(1)∗
t −κ0−κyλt

[
λt (1− LGD) e−κδ + 1− λt

]
= e−r

(1)∗
t −κ0−κyλt

[
1− λt

(
1− (1− LGD) e−κδ

)]
B

(2)
t,EH = e−r

(1)∗
t Et

[
e−πt+1

(
1
{
δ
(c)
t+1 > 0

}
(1− LGD) + 1

{
δ
(c)
t+1 = 0

})
B

(1)
t+1,EH

]
= e−r

(1)∗
t −κ0−κyλt

[
λt (1− LGD) e−κ0−κy+M+Λδ−2κδ (1− LGD) + (1− λt)B

(1)
t,EH

]
Thus:

B
(n)
t,EH = e−r

(1)∗
t −κ0−κyλt

[
λt (1− LGD)n e(n−1)(M+Λδ−κ0−κy)−nκδ + (1− λt)B

(n−1)
t,EH

]
(53)

C Mechanism: Differential Loss Given Default

Let us focus on the mechanism involving a differential LGD and consider a differential treatment

of nominal treasuries and TIPS in the case of default. Consider for instance a debt restructuring

as in the case of the Greek 2012 default. The government proposed to bondholders to exchange

outstanding treasuries against newly issued nominal bonds, regardless of potential inflation

protection. The exchange was done face-value for face-value.

In this case, the loss given default is bond-specific. Imagine that the newly-issued bonds are

valued 50cts per dollar of face value, then the holder of a bond trading at par obtains a recovery
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rate of exactly 50%, while the holder of a bond trading at a discount will obtain a higher recovery

rate. TIPS tend to trade at a premium compared to equivalent-maturity nominals because of the

inflation protection. However, their face value also increase during their lifetime with the accrued

inflation accumulated from the past. Thus, what will eventually determine if TIPS suffer more

than equivalent nominals in case of default depends on how the sovereign decides to treat the

accrued past inflation in the face value of the bond. If the government forgives all inflation

indexation, the TIPS will suffer more from default than its nominal counterpart since its face

value reduces to one. This disindexation could explain the differential pricing of the defaultable

treasuries by itself.

This channel has strong implications for the differential pricing of TIPS. Consider two TIPS that

have been issued at different times, but have the same maturity date. Today’s date is t, and the

older TIPS has been issued at date 0 with semi-annual coupon cold. The newer TIPS has just

been issued and has semi-annual coupon cnew. Both bonds have remaining time to maturity T .

Since all payment dates are aligned, a long-short position can easily annihilate all coupon

cashflows. The individual positions are given by:

wold = cnew exp

(
−

t∑
i=1

πi

)
and wnew = cold , (54)

and, assuming long position in the newer bond, the portfolio reduces to a zero coupon TIPS,

where the final payment is given by:

exp

(
T∑

i=t+1

πi

)
(cold − cnew) . (55)

In other words the long-short portfolio reduces to a newly issued zero-coupon TIPS with maturity

T and the face value is (cold − cnew).

Let us assume that the sovereign defaults at date τ , and that the sovereign only honors a fraction

ρ∗ of the accrued inflation since inception of each bond. The recovery payments of the old and

new TIPS are respectively given by:

wold exp

(
ρ∗

τ∑
i=1

πi

)
and wnew exp

(
ρ∗

τ∑
i=t+1

πi

)
, (56)
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such that the recovery payment of the portfolio is given by:

exp

(
ρ∗

τ∑
i=t+1

πi

)[
cold − cnew exp

(
(ρ∗ − 1)

t∑
i=1

πi

)]
. (57)

As a last step, we add a zero-coupon TIPS position to the portfolio, with face value (cnew − cold)

to cancel the principal repayment. Assuming homogeneity of treatment for all TIPS bonds in case

of default, the recovery payment of the aggregated portfolio is given by:

RP = exp

(
ρ∗

τ∑
i=t+1

πi

)
cnew

[
1− exp

(
(ρ∗ − 1)

t∑
i=1

πi

)]
. (58)

Provided accrued inflation over long periods is usually positive, we expect the recovery payment

to be positive since the term in the squared brackets is positive. Notice that the recovery payment

grows with the degree of disindexation (1− ρ∗) and goes to zero when ρ∗ = 1. This theory can

thus be tested by forming the price of these portfolios and tracking their prices over time.

We identify 5 TIPS pairs with aligned maturity dates that have been issued at different dates. We

summarize their characteristics in Table A8. Note that these bonds all pay semi-annually and

have the same seniority level. For each bond pairs, we compute the weights of the long-short

portfolio using their coupon rate and a reconstructed series of the CPI-U reference index taking

into account its indexation lag. The complete portfolio necessitates the price of a defaultable

zero-coupon TIPS for any possible time to maturity in days. We use the smoothed

Nelson-Siegel-Svensson parameters provided by Gurkaynak, Sack and Wright (2010) and

reconstruct the zero-coupon inflated price for each date.

The results are presented on Figure A1. All 5 bond pairs show the same pattern, and the

mispricing is high when the new bond is issued due to the on-the-run premium, but decreases

rapidly afterwards. All bond pairs eventually fluctuate mostly in the ±25cts range for $100 face

value. Bond pair 5, the most recent one in our sample, is a bit more elevated and fluctuates

between 25cts to 50cts for $100 face value. These values are overall small. To check that they

could be the result of the smoothed zero-coupon model, we compute confidence bands by adding

or subtracting 3bps to the TIPS zero-coupon bond yield. All confidence bands include 0. This

casts doubt on this particular channel as being the main driver of our results.
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D A Lucas tree economy with endogenous inflation

D.1 Model

Let us consider a CRRA Lucas tree economy with the following dynamics:

∆ct+1 = xt + σcεt+1 + κcδ
(c)
t+1

xt+1 = ρxxt + φδδ
(c)
t + φλλt + σxεt+1

(59)

where there is no intercept in the consumption dynamics without loss of generality, and εt is

standard normal. The default dynamics are given by:

Pt

(
δ
(c)
t+1 > 0

)
= λt

λt+1 = λ+ ρλλt + σλϵt+1

(60)

where ϵt is standard normal, and δ
(c)
t is gamma-zero distributed with scale parameter 1.8 In

addition, we assume that the monetary policy follows a standard Taylor rule, such that:

it = i+ bππt + bxxt . (61)

The pricing kernel is given by:

Mt+1 = βe−γ∆ct+1 . (62)

We assume that the inflation rate has a linear formulation given the states, such that:

πt = π + κxxt + κλλt + κδδ
(c)
t . (63)

We solve these coefficients as a function of the remaining dynamics.

8We could alternatively design the λt process as an autoregressive gamma and make the default proba-
bility 1− e−λt , as is the case for the term structure model. This merely complicates computations.
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D.2 Solution

We calculate the nominal riskless bond price as:

Et

(
Mt+1e

−πt+1
)

= βEt

[
exp

{
−γxt − γσcεt+1 − γκcδ

(c)
t+1 − π − κx

(
ρxxt + φδδ

(c)
t + φλλt + σxεt+1

)
−κλλt+1 − κδδ

(c)
t+1

}]
= β exp

{
−π +

(κxσx + γσc)
2

2
− (γ + κxρx)xt − κxφδδ

(c)
t − κxφλλt

}
×

Et

[
exp

{
− (γκc + κδ) δ

(c)
t+1 − κλλt+1

}]
= β exp

{
−π +

(κxσx + γσc)
2

2
− (γ + κxρx)xt − κxφδδ

(c)
t − κxφλλt

}
×

exp

{
− γκc + κδ
1 + γκc + κδ

λt − κλ
(
λ+ ρλλt

)
+

κ2λσ
2
λ

2

}
Therefore we have:

it = − log β + π + κλλ− (κxσx + γσc)
2

2
−

κ2λσ
2
λ

2

+ (γ + κxρx)xt + κxφδδ
(c)
t +

(
κxφλ +

γκc + κδ
1 + γκc + κδ

+ κλρλ

)
λt (64)

The nominal interest rate is also determined by the Taylor rule, such that:

it = i+ bπ

(
π + κxxt + κλλt + κδδ

(c)
t

)
+ bxxt . (65)

Putting both equations together, we have the following system:

i+ bππ = − log β + π + κλλ− (κxσx + γσc)
2

2
−

κ2λσ
2
λ

2
(66)

bx + bπκx = γ + κxρx (67)

bπκδ = κxφδ (68)

bπκλ = κxφλ + κλρλ +
γκc + κδ

1 + γκc + κδ
(69)
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As long as bπ ̸= 1, π is pinned down by Equation (66). We then obtain:

κx =
γ − bx
bπ − ρx

, κδ =
φδ

bπ
· κx =

φδ

bπ
· γ − bx
bπ − ρx

and κλ =
1

bπ − ρλ

[
κxφλ +

γκc + κδ
1 + γκc + κδ

]
. (70)

D.3 Discussion

Assuming the system to be stationary such that |ρx| < 1 and |ρλ| < 1, the inflation jump upon

default parameter κδ is:

κδ =
φδ

bπ
· κx . (71)

bπ is naturally positive since it represents the strength of the central ban’s battle against inflation.

Its magnitude is key to determining the inflation parameters in the system. Economic intuition

also suggests that φδ is negative, implying that the long-run mean of consumption growth

expectation decreases persistently after a sovereign default occurs. The magnitude of φδ provides

the size of the initial forecast decrease, which is smoothed for the subsequent periods by the

parameter ρx. Therefore, the sign of κδ is that of −κx, which is examined below.

The impact of long run consumption growth on inflation is given by:

κx =
γ − bx
bπ − ρx

. (72)

In standard setups, the price of risk γ will typically be larger than the central bank reaction

coefficient for real activity. Common values for the latter are 0.5 or 1. Therefore, the sign of κx is

the same as that of bπ − ρx. Since the long run component of consumption growth is fairly

persistent (ρx = 0.97 in the original Bansal & Yaron 2004 calibration), the size of the inflation

coefficient in the Taylor rule, bπ, is the key determinant of inflation reaction to consumption

growth, and default.

If bπ < ρx, then κx < 0, leading to hyperinflation upon default since κδ > 0. Notice that the

direct and indirect effects of default on inflation add to each other. Indeed, when δ
(c)
t jumps,

inflation increases by κδ. On the next period, xt+1 decreases by φδ, meaning that inflation

increases further at t+ 1 since κx is negative. Both effects thus play in the same direction.

The relationship between the default probability and inflation is governed by the coefficient κλ,
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which has the following function form:

κλ =
1

bπ − ρλ

[
κxφλ +

γκc + κδ
1 + γκc + κδ

]
. (73)

To simplify the discussion, we assume that φλ = 0. Since the default probability is very

persistent, we can safely assume that ρλ will be close to 1 such that bπ − ρλ is negative. Thus,

Equation (73) shows that κλ has the opposition sign as the fraction involving the impact of

default on inflation (κδ) and on consumption growth (κc). This ratio is positive as long as:

κδ > −γκc . (74)

The previous condition implies that the inflation jump upon default should be sufficiently large.9

This condition will lead to a negative correlation between inflation and the default probability.

Notably, this means that κδ and κλ can be of different signs, and inflation can react in opposite

ways to default probability and the default event itself.

As long-run consumption growth expectation (xt) falls, inflation will react according to κx. If κx

is positive, this implies that inflation is also falling, and the central bank will adjust the nominal

interest rate down according to the Taylor rule. Because the consumption growth process is

persistent, low expected growth today translates into low expected growth tomorrow. Low

expected consumption growth tomorrow means high marginal utility state of the world causing

the real interest rate to drop. In this scenario, both real and nominal rates decrease as

consumption growth expectations decline. On the other hand, if κx is negative, inflation and the

nominal interest rate both rise when xt drops. Increase in expected inflation causes the nominal

stochastic discount factor to decrease. This makes nominal bonds cheaper and nominal rates

higher. In order for the Euler equation for nominal bonds to continue to hold, it has to be the

case that the decline in expected consumption growth, after scaling by γ, cannot dominate the

rise in expected inflation. Otherwise, nominal bond prices rise and push down the nominal

interest rate. Futhermore, the solution also requires that the central bank does not respond to the

rise in inflation too strongly, i.e. less than one-for-one or bπ < 1, since the falling real interest rate

makes it impossible for the nominal rate to rise faster than inflation. In this world, an increase in

expected consumption growth will make real interest rates increase, which will lead inflation

downwards. In reaction, the central bank will decrease its nominal interest rate to mitigate the

effects on inflation.

9Note that to be well-defined, the Laplace transform needs that γκc + κδ > −1.
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When a sovereign default happens, the current expected consumption growth (xt) stays the same

but its future path is revised downwards because of φδ < 0. Accordingly, the real interest rate is

not going to move but expected inflation will increase, such that the equilibrium nominal rate will

increase as well. Therefore, current inflation adjusts upwards for the Taylor rule nominal rate to

go up as well.

Last, an increase in the default probability makes expected consumption growth decline through

κc, as the default process directly enters the realized consumption growth process. The

equilibrium real rate will thus adjust downwards. As the chance of a default is higher, inflation

has a higher probability to jump by κδ so expected inflation is revised upwards. The effect on the

equilibrium nominal rate can thus be positive or negative. If the inflation jump upon default is

very large, the equilibrium nominal rate will increase as well as the Taylor rule policy rate.

However, when the reaction coefficient to inflation is low enough (bπ), the Taylor rule interest rate

can never catch up with the equilibrium nominal rate so inflation needs to go down in reaction.

This generates the negative correlation between inflation and default probability.

E Closed-Form Estimation Equations

E.1 The term structure of ILS

Our first empirical target is the zero-coupon inflation-linked swaps. We assume in our model that

ILS are virtually riskfree, such that they are equivalent to a long-short position on nominal and

real bonds. By no-arbitrage, the swap rate of a n residual maturity is given by:

ILSt(n) =
1

n
log EQ

t

[
exp

(
n∑

i=1

πt+i

)]
. (75)

Using the inflation specification (10) and the risk-neutral dynamics of the factors, we easily find

that:

ILSt(n) = ails,n + b
(x)′

ils,n · xt + b
(y)′

ils,n · yt , (76)

where the loadings are obtained through closed-form recursions (See Appendix H). If inflation

does not depend on yt or δt, i.e. when κ
(π)
y = 0 and κ

(π)
δ = 0, the last term of Equation (76)

disappears and all the riskless yield curves are explained by xt. If in turn inflation depends on the

default and credit-event variables, then b
(y)
ils,n is different from zero and credit factors and the
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default probability enter the ILS curve. This feature results from the inflation and the pricing

kernel specification. Indeed, both riskless nominal and real bonds do not suffer from sovereign

default directly, and are hence hedges against default risk. However, nominals can be more

exposed to default risk than real bonds through inflation risk. If inflation correlates positively

with default risk, nominal bonds are more exposed to default than real bonds (b
(y)
ils,n > 0), since

their real cashflow decreases significantly in case of default, and vice versa. Last, notice that since

Φy is lower triangular and inflation does not depend on the liquidity factor y
(ℓ)
t , this factor does

not enter the ILS curve.

Our empirical exercise also considers OIS rates as proxies for riskless nominal yields. It is easy to

show that the yield of a riskless nominal bond of residual maturity n, denoted by rt(n), is given

by:

rt(n) = arf,n + b
(x)′

rf,n · xt + b
(y)′

rf,n · yt , (77)

where the loadings are also obtained through closed-form recursions (See Appendix H).

E.2 Treasuries and default events

The term structures of nominal treasuries and TIPS constitutes our second empirical target. By

no-arbitrage, the prices of these securities can be obtained by computing the present value of all

future cashflows. However, we need to include the possibility that the sovereign may default and

not entirely repay the principals associated with the treasuries investments.

Having defined the cashflows in all states of the world (see Section 4.4 and the summary of Table

A9), we can provide the general pricing formulas. The price of a TIPS of residual maturity n is

given by:

B∗
t (n) =

n∑
i=1

EQ
t

exp
−δ

(c)
t+i −

i−1∑
j=0

[
r
(1)∗

t+j + (1− ρ∗)πt+j+1

] · 1


i−1∑
j=0

δ
(c)
t+j + δ

(ℓ)
t+j = 0

1
{
δ
(c)
t+i > 0

}
+ EQ

t

exp
−δ

(ℓ)
t+i −

i−1∑
j=0

r
(1)∗

t+j

 · 1


i−1∑
j=0

δ
(c)
t+j + δ

(ℓ)
t+j = 0

1
{
δ
(c)
t+i = 0 ∩ δ

(ℓ)
t+i > 0

}
+ EQ

t

exp
−

n−1∑
j=0

r
(1)∗

t+j

1


n∑

j=0

δ
(c)
t+j + δ

(ℓ)
t+j = 0


 . (78)

The first row of (78) represents the discounted cashflow in case of a credit event at t+ i, the

second row has the similar interpretation for a liquidity event, and the last row gives the present
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value of the consumption unit at maturity.10 In the same spirit, the price of a nominal treasury of

residual maturity n is given by:

Bt(n) =

n∑
i=1

EQ
t

exp
−δ

(c)
t+i −

i−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

) · 1


i−1∑
j=0

δ
(c)
t+j = 0

1
{
δ
(c)
t+i > 0

}
+ EQ

t

exp
−

n−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)1


n∑

j=0

δ
(c)
t+j = 0


 . (79)

Equation (79) simply states that the price of the nominal bond is the sum of discounted recovery

payments if default happens between t+ i− 1 and t+ i (first row), and the discounted principal if

no default occurs during the lifespan of the bond (second row).

We show in Appendix I that our model provides closed-form (though, non-affine) pricing formulas

for Equations (79-78), such that the prices of both bonds, are given by:

B∗
t (n) =

n∑
i=1

[
exp

(
Ãtips,i + B̃

(x)′

tips,i · xt + B̃
(y)′

tips,i · yt
)
− exp

(
Atips,i + B

(x)′

tips,i · xt + B
(y)′

tips,i · yt
)

+ exp
(
C̃tips,i + D̃

(x)′

tips,i · xt + D̃
(y)′

tips,i · yt
)
− exp

(
Ctips,i + D

(x)′

tips,i · xt + D
(y)′

tips,i · yt
)]

+ exp
(
Ctips,n + D

(x)′

tips,n · xt + D
(y)′

tips,n · yt
)
, (80)

and:

Bt(n) =
n∑

i=1

exp
(
Ãnom,i + B̃

(x)′

nom,i · xt + B̃
(y)′

nom,i · yt
)
− exp

(
Anom,i + B

(x)′

nom,i · xt + B
(y)′

nom,i · yt
)

+ exp
(
Anom,n + B(x)′

nom,n · xt + B(y)′
nom,n · yt

)
. (81)

We can then easily obtain the BEI pricing formula by considering the log-difference of TIPS and

10We leave aside the embedded option and the inflation lag for simplicity in these pricing formulas. First,
note that the embedded inflation option would, if anything, raise the price of the TIPS, decrease its yield,
thus play against a large ILSBEI spread. Hence, by neglecting the deflation option, we underestimate the
role of the other factors, if anything. In addition, notice that the value of this deflation floor would be
the biggest during the financial crisis, where the ILSBEI spread is the biggest. Our simplification is thus
conservative. Second, while the inflation lag can matter for short-enough maturities (below 2y), it is unlikely
to have a large impact for longer maturities since the 3-months lag represents a smaller proportion of the
total maturity of the bond.
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nominal bond prices:

BEIt(n) =
1

n
log

(
B∗

t (n)

Bt(n)

)
. (82)

E.3 CDS pricing

In case of default, the payment provided by the CDS is equal to the loss given default of a

nominal bond, i.e. 1− e−δ
(c)
t . The present value of the protection is given by:

PSt(n) =
n∑

i=1

EQ
t

exp
−

i−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)(1− e−δ
(c)
t+i

)
1


i−1∑
j=0

δ
(c)
t+j = 0

1
{
δ
(c)
t+i > 0

} .

We assume that a buyer of protection makes periodic payments from time t to maturity n to

protect against any type of credit event. The cash flow payment at time t+ i conditional on no

default is designated as S(n)
t . The present value of the stream of cash flows paid by the protection

buyer is:

PB
(n)
t = S(n)

t

n∑
i=1

EQ
t

exp
−

i−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)1


i∑

j=0

δ
(c)
t+j = 0




No arbitrage pricing requires that the present value of the protection bought is equal to the

present value of the protection sold. Equating both legs at inception, the swap spread yields:

S(n)
t =

B̃t(n)−Bt(n)∑n
i=1 exp

(
Anom,i + B

(x)′

nom,i · xt + B
(y)′

nom,i · yt
) (83)

where B̃t(n) represents the price of a nominal bond for a recovery rate of 100%, and Bt(n) is the

exact pricing formula presented in Equation (81) (see Appendix J).

F Affine property and conditional moments of wt

Let us compute the physical conditional moment-generating function of wt = (x′t, y
′
t, δ

′
t)
′ applied

in u =
(
u′x, u

′
y, u

′
δ

)′
. For the sake of generality we provide the formulas for εx,t ∼ N (0,Σ) and
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general scale parameter cy. In practice our empirical model assumes Σ = I3.

φP
wt
(u) := EP

t

[
exp

(
u′wt+1

)]
= exp

{
u′x (µ+Φxxt) +

1

2
u′xΣux

}
EP
t

{
EP
t

[
exp

(
u′yyt+1 + u′δδt+1

) ∣∣yt+1

]}
= exp

{
u′x (µ+Φxxt) +

1

2
u′xΣux

}
EP
t

[
exp

((
βλ

diag(cδ)uδ
1− diag(cδ)uδ

+ uy

)′
yt+1

)]
where the fraction is an abuse of notation for an element by element ratio and:

βλ =

(
β
(c)
λ 0

0 β
(ℓ)
λ

)
.

Thus, denoting by ũy =
(
βλ

diag(cδ)uδ

1−diag(cδ)uδ
+ uy

)
, we have:

φP
wt
(u) = exp

{
u′x (µ+Φxxt) +

1

2
u′xΣux +

(
diag(cy)ũy

1− diag(cy)ũy

)′
Φy yt − ν ′ log [1− diag(cy)ũy]

}
,

(84)

which is an exponential-affine function of xt and yt, thus of wt by extension. The conditional

mean of wt is then given by:

EP
t (xt+1) = µ+Φx xt

EP
t (yt+1) = diag(cy) (ν +Φy yt)

EP
t (δt+1) = EP

t

[
EP
t

(
δt+1

∣∣yt+1

)]
= diag(cδ)β

′
λEP

t (yt+1) .

For notational convenience, we introduce the block matrix Q of size N ×N defined as:

Q =

 I3 0 0

0 diag (cy) 0

0 diag (cδ) βλ diag (cy) diag (cδ)


We obtain that

EP
t (wt+1) = Ψ0 +Ψwt ,
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where:

Ψ0 = Q×

 µ

ν

0

 and Ψ = Q×

 Φx 0 0

0 Φy 0

0 0 0

 . (85)

Let us now turn to the conditional variance. xt is independent from yt and δt, and its conditional

covariance matrix is given by Σ. Then, using the properties of gamma variables, we have:

VP
t (yt+1) = diag (cy)

2 × diag (ν + 2Φy yt) .

Using the law of total variance, we can express the conditional variance of δt as:

VP
t (δt+1) = VP

t

[
EP
t

(
δt+1

∣∣yt+1

)]
+ EP

t

[
VP
t

(
δt+1

∣∣yt+1

)]
= VP

t

[
diag (cδ)β

′
λ yt+1

]
+ EP

t

[
2diag (cδ)

2 diag
(
β′
λ yt+1

)]
= diag (cδ)β

′
λVP

t (yt+1)βλdiag (cδ) + 2diag (cδ)
2 diag

(
β′
λ EP

t [yt+1]
)

= diag (cδ)β
′
λVP

t (yt+1)βλdiag (cδ) + 2diag (cδ)
2 diag

[
β′
λ diag (cy) (ν +Φy yt)

]
.

Last, the conditional covariance between yt and δt is given by:

CovPt (yt+1, δt+1) = CovPt
(
yt+1, EP

t

[
δt+1

∣∣yt+1

])
+ EP

t

[
CovPt

(
yt+1, δt+1

∣∣yt+1

)]
= CovPt

(
yt+1, diag (cδ)β

′
λ yt+1

)
= VP

t (yt+1)βλ diag (cδ) .

Putting all results together, we obtain:

Ωt−1 = VP
t (wt+1) = Q×

 Σ 0 0

0 diag (ν + 2Φy yt) 0

0 0 2diag [β′
λ diag (cy) (ν +Φy yt)]

×Q′ . (86)

We obtain unconditional moments by assuming stationarity of wt:

EP (wt) = (IN −Ψ)−1Ψ0

Vec
[
VP (wt)

]
= [IN2 − (Q⊗Q) (Ψ⊗Ψ)]−1 ×

[
Ω0 +ΩEP (yt)

]
,
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where Ω0 and Ω are such that:

Vec

 Σ 0 0

0 diag (ν + 2Φy yt) 0

0 0 2diag [β′
λ diag (cy) (ν +Φy yt)]

 = Ω0 +Ωyt .

G Affine risk-neutral property

To obtain the affine property under Q we need to proceed to the change of measure implied by

the SDF specification of Equation (9). Since xt is independent from yt and δt and that the SDF

does not incorporate cross-terms, we can proceed to its change of measure separately from that of

(yt, δt).

Our specification of xt dynamics and the SDF that depends on xt is that of a standard Gaussian

affine term structure model with time varying prices of risk. We can thus directly apply the

standard result that:

xt = µQ +ΦQ
x xt−1 +

√
Σ εQt , where εQt ∼ N (0, I3) , (87)

and the risk-neutral parameters are given by:

µQ = µ+ΣΛ0,x, ΦQ
x = Φx +ΣΛ1,x . (88)

For the change of measure associated with the default and liquidity risk variables, we rely on

Propositions 2.5-2.6 of Monfort et al. (2020), and we have that the risk-neutral intensities are

proportional to the physical intensities:

δ
(c)
t =

P
(c)
t∑

j=1

ξ
(c)
j,t where P

(c)
t

∣∣λ(c)
t

Q∼ P
(
λ
(c)Q

t

)
and ξ

(c)
j,t

Q∼ Exp

(
1

c
(c)Q

δ

)
, (89)

where

λ
(c)Q

t = β
(c)Q

λ,1 · y(c)1,t + β
(c)Q

λ,2 · y(c)2,t (90)

and,

β
(c)Q

λ = β
(c)
λ

(
1 + c

(c)Q

δ Λδ

)
, and c

(c)Q

δ =
c
(c)
δ

1− c
(c)
δ Λδ

(91)
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and the risk-neutral intensity of the liquidity event variable is the same under both measures

since δ
(ℓ)
t is not in the SDF. The risk-neutral dynamics of yt is given by a vector autoregressive

gamma process, such that:

yt | yt−1
Q∼ Γν

(
ΦQ
y yt−1, c

Q
y

)
, (92)

where

ΦQ
y = diag

(
cQy
cy

)
· Φy and cQy =

cy

1− diag (cy)
[
Λy + βλ

(
diag(cδ)Λ̃δ

1−diag(cδ)Λ̃δ

)] , (93)

where Λ̃δ = (Λδ, 0)
′. The proof is easily obtained below:

EQ
t−1

[
exp

(
u′yyt + u′δδt

)]
=

Et−1

[
exp

(
(uy + Λy)

′ yt +
(
uδ + Λ̃δ

)′
δt

)]
Et−1

[
exp

(
Λ′
yyt + Λ̃′

δδt

)]
Using law of iterated expectations:

EQ
t−1

[
exp

(
u′yyt + u′δδt

)]
=

Et−1

[
exp

((
uy + Λy + βλ

[
cδ⊙(uδ+Λ̃δ)

1−cδ⊙(uδ+Λ̃δ)

])′
yt

)]
Et−1

[
exp

((
Λy + βλ

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

])′
yt

)]

=

exp

{(
cy⊙ũy

1−cy⊙ũy

)′
Φyyt−1 − ν ′ log (1− cy ⊙ ũy)

}
exp

{(
cy⊙Λ̃y

1−cy⊙Λ̃y

)′
Φyyt−1 − ν ′ log

(
1− cy ⊙ Λ̃y

)}
= exp

{(
cy ⊙ ũy

1− cy ⊙ ũy
− cy ⊙ Λ̃y

1− cy ⊙ Λ̃y

)′

Φyyt−1 − ν ′ log

(
1− cy ⊙ ũy

1− cy ⊙ Λ̃y

)}

where  ũy = uy + Λy + βλ

[
cδ⊙(uδ+Λ̃δ)

1−cδ⊙(uδ+Λ̃δ)

]
Λ̃y = Λy + βλ

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
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Setting uδ = 0, we obtain:

cy ⊙ ũy
1− cy ⊙ ũy

− cy ⊙ Λ̃y

1− cy ⊙ Λ̃y

= cy ⊙

(
1− cy ⊙ Λ̃y

)
⊙ ũy − Λ̃y ⊙ (1− cy ⊙ ũy)(

1− cy ⊙ Λ̃y

)
⊙ (1− cy ⊙ ũy)

= cy ⊙
ũy − Λ̃y(

1− cy ⊙ Λ̃y

)
⊙ (1− cy ⊙ ũy)

=
cy ⊙ uy(

1− cy ⊙ Λ̃y

)
⊙ (1− cy ⊙ ũy)

Second, looking at the term in the log:

1− cy ⊙ ũy

1− cy ⊙ Λ̃y

=
1− cy ⊙

[
uy + Λy + diag

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
βλ

]
1− cy ⊙

[
Λy + diag

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
βλ

]
= 1− cy ⊙ uy

1− cy ⊙
[
Λy + diag

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
βλ

]
We set cQy =

cy

1−cy⊙
[
Λy+diag

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
βλ

] =
cy

1−cy⊙Λ̃y
. We obtain:

EQ
t−1

[
exp

(
u′yyt

)]
= exp


 cy ⊙ uy(

1− cy ⊙ Λ̃y

)
⊙ (1− cy ⊙ ũy)

′

Φyyt−1

− ν ′ log

1− cy ⊙ uy

1− cy ⊙
[
Λy + diag

[
cδ⊙Λ̃δ

1−cδ⊙Λ̃δ

]
βλ

]


= exp

{(
cQy ⊙ uy

1− cy ⊙ ũy

)′

Φyyt−1 − ν ′ log
(
1− cQy ⊙ uy

)}
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We then have:

cQy ⊙ uy

1− cy ⊙ ũy
= cQy ⊙ uy

1− cy ⊙ uy − cy ⊙ Λ̃y

= cQy ⊙ uy(
1− cy ⊙ Λ̃y

)
⊙
(
1− uy⊙cy

1−cy⊙Λ̃y

)
= cQy ⊙ uy(

1− cy ⊙ Λ̃y

)
⊙
(
1− uy ⊙ cQy

)
=

cQy ⊙ uy

1− uy ⊙ cQy
⊙

cQy
cy

So in the end we have:

EQ
t−1

[
exp

(
u′yyt

)]
= exp

{(
cQy ⊙ uy

1− uy ⊙ cQy
⊙

cQy
cy

)′

Φyyt−1 − ν ⊙ log
(
1− cQy ⊙ uy

)}

= exp

{(
cQy ⊙ uy

1− uy ⊙ cQy

)′

diag

(
cQy
cy

)
Φyyt−1 − ν ⊙ log

(
1− cQy ⊙ uy

)}
.

and the result is obtained.

Since the classes of distributions are the same under the risk-neutral measure, wt is an affine

process under the risk-neutral measure and its conditional moment generating function is given

by:

φQ
wt
(u) := EQ

t

[
exp

(
u′wt+1

)]
= exp

{
u′x

(
µQ +ΦQ

x xt

)
+

1

2
u′xΣux +

(
diag(cQy )ũ

Q
y

1− diag(cQy )ũ
Q
y

)′

ΦQ
y yt − ν ′ log

[
1− diag(cQy )ũ

Q
y

]}
,

where

ũQy = ũy =

(
βQ
λ

diag(cQδ )uδ

1− diag(cQδ )uδ
+ uy

)
.

Building on the property of affine processes, we have that the multi-horizon moment generating

function of wt is also an exponential-affine function of wt under the risk-neutral measure. Let us

introduce the following notation:

φQ
wt
(u) = exp

(
AQ(u) +BQ(u)′wt

)
.
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We have that:

φQ
wt

(u1, . . . , un) := EQ
t

exp
 n∑

i=j

u′j wt

 = exp
[
AQ

n (u1, . . . , un) + BQ
n (u1, . . . , un)

′ wt

]
,

where AQ
0 (u1, . . . , un) = 0 and BQ

n (u1, . . . , un) = 0 and the loadings are defined through the

following recursions:

AQ
n (u1, . . . , un) = AQ

(
u1 + BQ

n−1 (u2, . . . , un)
)
+AQ

n−1 (u2, . . . , un)

BQ
n (u1, . . . , un) = BQ

(
u1 + BQ

n−1 (u2, . . . , un)
)
.

This multi-horizon moment generating function will be calculated for all n− 1 first arguments are

equal, i.e. u1 = u2 = . . . = un−1 = u and un = v. Thus, our notation AQ
n (u, v) and BQ

n (u, v) can

be obtained through the above recursions by calculating AQ
n (u, . . . , u, v) and BQ

n (u, . . . , u, v).

H Pricing formulas for riskless nominal and real

bonds

The price of riskless inflation-linked bonds and nominal bonds is respectively given by:

D
(n)∗

t = EQ
t

exp
−

n−1∑
j=0

r∗t+j

 = e−nκ
(r)
0 EQ

t

exp
−

n−1∑
j=0

κ(r)
′
wt+j


D

(n)
t = EQ

t

exp
−

n−1∑
j=0

(
r∗t+j + πt+j+1

)
= e

−n
(
κ
(r)
0 +κ

(π)
0 +κ(r)′ wt

)
EQ
t

exp
−

n−1∑
j=1

(
κ(r) + κ(π)

)′
wt+j − κ(π)

′
wt+n

 .

where κ(r) =
(
κ
(r)′
x , 0′3, 0

′
2

)′
and κ(π) =

(
κ
(π)′
x , κ

(π)′
y , 0, κ

(π)
δ , 0

)′
. Thus, using our notation for the

multi-horizon moment generating function of wt under the risk-neutral measure, these
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expectations can be transformed as:

D
(n)∗

t = exp
{
−nκ

(r)
0 +AQ

n

(
−κ(r),0

)
+
[
BQ
n

(
−κ(r),0

)
− κ(r)

]′
wt

}
D

(n)
t = exp

{
−n
(
κ
(r)
0 + κ

(π)
0

)
+AQ

n

(
−κ(r) − κ(π),−κ(π)

)
+
[
BQ
n

(
−κ(r) − κ(π),−κ(π)

)
− κ(r)

]′
wt

}
.

I Pricing formulas for nominal treasuries and TIPS

Let us first focus on nominal bonds. We rewrite Equation (79) for convenience:

B
(n)
t =

n∑
i=1

EQ
t

exp
−δ

(c)
t+i −

i−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)×

1


i−1∑
j=0

δ
(c)
t+j = 0

− 1


i∑

j=0

δ
(c)
t+j = 0




+ EQ
t

exp
−

n−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)1


n∑

j=0

δ
(c)
t+j = 0


 .

We define δ
(c)
t = e′cwt. Focusing on the first indicator term in the above equation, we can write:

EQ
t

exp
−δ

(c)
t+i −

i−1∑
j=0

(
r
(1)∗

t+j + πt+j+1

)× 1


i−1∑
j=0

δ
(c)
t+j = 0




= e
−i

(
κ
(r)
0 +κ

(π)
0

)
−κ(r)′wtEQ

t

exp
−

i−1∑
j=1

(
κ(r) + κ(π)

)′
wt+j −

(
ec + κ(π)

)′
wt+i

× 1


i−1∑
j=0

δ
(c)
t+j = 0


 .

Using the lemma 3.1 of Monfort et al. (2020), we have:

e
−i

(
κ
(r)
0 +κ

(π)
0

)
−κ(r)′wtEQ

t

exp
−

i−1∑
j=1

(
κ(r) + κ(π)

)′
wt+j −

(
ec + κ(π)

)′
wt+i

× 1


i−1∑
j=0

δ
(c)
t+j = 0




= lim
u→+∞

e
−i

(
κ
(r)
0 +κ

(π)
0

)
−κ(r)′wtEQ

t

exp
−

i−1∑
j=1

[(
κ(r) + κ(π)

)′
wt+j + uδ

(c)
t+j

]
−
(
ec + κ(π)

)′
wt+i


= lim

u→+∞
e
−i

(
κ
(r)
0 +κ

(π)
0

)
−κ(r)′wtEQ

t

exp
−

i−1∑
j=1

(
κ(r) + κ(π) + uec

)′
wt+j −

(
ec + κ(π)

)′
wt+i


= lim

u→+∞
exp

{
− i
(
κ
(r)
0 + κ

(π)
0

)
+AQ

i

(
−κ(r) − κ(π) − uec, −ec − κ(π)

)
+

[
BQ
i

(
−κ(r) − κ(π) − uec, −ec − κ(π)

)
− κ(r)

]′
wt

}
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Applying the same logic to the remaining terms, and assuming default has not occurred at date t,

we obtain the result of Equation (81):

B
(n)
t = lim

u→+∞
e−κ(r)′wt

n∑
i=1

e
−i

(
κ
(r)
0 +κ

(π)
0

)
×

[
exp

{
AQ

i

(
−κ(r) − κ(π) − uec, −ec − κ(π)

)
+ BQ

i

(
−κ(r) − κ(π) − uec, −ec − κ(π)

)′
wt

}
− exp

{
AQ

i

(
−κ(r) − κ(π) − uec, −uec − κ(π)

)
+ BQ

i

(
−κ(r) − κ(π) − uec, −uec − κ(π)

)′
wt

}]
+ exp

{
− n

(
κ
(r)
0 + κ

(π)
0

)
+AQ

n

(
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Let us now turn to TIPS valuation. Again, for convenience, we rewrite the general pricing

formula given by Equation (78) below:
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We define δ
(ℓ)
t = e′ℓwt. Assuming no default or liquidity event at date t, the first term of this

equation can be detailed as:
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Using the same properties, we obtain:
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for the liquidity event:
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and
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which is also the last term when i = n. Putting all these terms together, we obtain the result of

Equation (80).

J Pricing formulas for CDS spreads

The protection buyer value is given by:
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Applying the same pricing principle as in Appendix I, we can easily express the protection buyer

value as:
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The protection seller value is given by:
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We can separate the term in
(
1− e−δ

(c)
t+i

)
in two and treat these two terms. The first term,
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 ,

would be the price of a nominal treasury with recovery payment of the full face value, forgetting

the principal repayment at maturity provided no default has happened (the last term of Equation

(79) is missing). The second term,
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 ,

is exactly the first row of Equation (79), so it is the price of a nominal treasury, forgetting the

principal repayment at maturity provided no default has happened. In the end, taking the

difference between these two terms, it is innocuous to add the discounted value of the last

payment in both terms since they are canceling out in the difference. We hence obtain that the

protection seller value is the difference between the price of a nominal treasury with recovery

payment of $1 and the price of the standard nominal treasury. The result of Equation (83) is

obtained by equation the protection buyer and seller values.

K Gradient computation for measurement equations

We use the extended Kalman filter for estimation, which requires the computation of the gradient

of the pricing equations in the factors. Since our pricing equations are closed-form, we have

closed-form gradients as well. Since these computations are the result of tedious algebra, we only

present the results without justification.

Let us start with riskless yields. Given the formulation of the ILS and nominal riskless yields (see

Equations 76-77), we trivially have:
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Let us turn now to nominal treasuries and TIPS. Continuously compounded yields of these bonds

are respectively denoted by R
(n)
t = −n−1 logB

(n)
t and R

(n)∗

t = −n−1 logB
(n)∗

t . It is useful to

define the differentials with respect to the price instead of the yield directly. Using the chain rule,

we have:
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Let us focus on the differential of the nominal bond price first.
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For TIPS, applying a similar principle:
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Last, for the CDS, let us denote by:
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where fn(•) and gn(•) are explicit functions given by Equation (83). Using differentiation rules:
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The differential of fn(wt) is easily obtained as a function of the differential of nominal treasuries:
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and, for the function gn(wt):
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L Identification constraints

For econometric identification, cQy = 1 imposed. For parsimony, the covariance matrix of

measurement errors is assumed to be diagonal, and each block of observables has a different

standard deviation parameter. The standard deviation of the liquidity proxy measurement errors

is set to a fifth of its in-sample standard deviation, as it provides a reasonable fit of the proxy.

The standard deviation of ILSBEI measurement errors lies below 6bps. This constraint is not

binding at the optimum. Last, the measurement errors on the CDS term structure depend on a

CDS illiquidity index. The CDS illiquidity is measured as the inverse of the aggregated monthly

depth on the 5y U.S. sovereign CDS, computed as the number of contributors whose contributions

were included in the final composite value (Markit data, see Figure A6, bottom panel). This

measure is inspired by Qiu and Yu (2012).11 The final standard deviations of CDS measurement

errors are obtained by scaling the series by an estimated positive parameter.

11Alternative liquidity measures exist in the literature but do not cover the sample that we consider in
the paper (see e.g. Wang et al. (2021) or the references in Augustin et al. (2014)).
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Table A1: First Difference Regressions: Post-Crisis
Table A1 presents the results of regressions of the first difference in the five-year ILSBEI spread on the
growth in Treasury debt held by the public (G) and the first difference in of the Euro-denominated five-year
U.S. Treasury CDS spread (CDS) with controls for liquidity and slow moving capital. Liquidity and slow-
moving capital variables are the VIX index (V IX), the spread between LIBOR and OIS (L − OIS), the
difference between an off-the-run and on-the-run 10-year nominal Treasury security (OTR), and the noise
measure of Hu, Pan and Wang (2013) (HPW ). Standard errors are presented in parentheses and corrected
for autocorrelation and heteroskedasticity via Newey-West with three lags. Data are sampled at the monthly
frequency and cover the period January, 2010 through December, 2020.

Specification (1) (2) (3) (4) (5)
G −0.004 −0.004 −0.000
SE (0.004) (0.004) (0.005)

CDS 0.067 0.061 0.041
SE (0.106) (0.106) (0.110)

V IX 0.001 0.001
SE (0.001) (0.001)

L−OIS 0.058 0.055
SE (0.037) (0.038)

OTR −0.011 −0.002
SE (0.174) (0.181)

HPW 0.012 0.013
SE (0.010) (0.010)

R2 0.007 0.003 0.009 0.066 0.067
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Table A2: First Stage Instrumental Variables Regressions: First Difference
Table A2 presents the results of regressions of debt growth, the first difference in CDS spreads, and the
first difference in liquidity controls. Data are sampled at the monthly frequency over June, 2005 through
December, 2020.

V IX L−OIS OTR HPW CDS
G 0.314 0.018∗ 0.009∗∗∗ 0.183∗∗∗ 0.002
SE (0.283) (0.010) (0.003) (0.049) (0.003)

V IX 0.001
SE (0.001)

L−OIS 0.007
SE (0.024)

OTR −0.071
SE (0.115)

HPW 0.007
SE (0.006)

R2 0.007 0.016 0.055 0.069 0.032
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Table A3: Decomposition of ILSBEI Regressions
Table A3 presents decomposed versions of the results of regressions of the five-year ILSBEI spread on the
Euro-denominated five-year U.S. Treasury CDS spread (CDS), liquidity and slow-moving capital controls,
and growth in aggregate Treasury debt held by the public (G) presented in Table 2. Liquidity and slow-
moving capital controls are the level of the VIX index (V IX), the spread between LIBOR and OIS (L−OIS),
the spread between an off-the-run and on-the-run 10-year Treasury (OTR), and the noise measure of Hu,
Pan, and Wang (HPW ). Column (1) presents results for the ILS, column (2) for the ILS minus nominal
Treasury (TSY), column (3) for the breakeven inflation (BEI), column (4) for the nominal Treasury, and
column (5) for the inflation-protected Treasury (TIPS). Standard errors in parentheses are corrected for
heteroskedasticity via Newey-West with three lags. Data are sampled at the monthly frequency and cover
the period July, 2005 through December, 2020.

ILS ILS-TSY BEI TSY TIPS
G −0.011 0.003 −0.015∗ −0.014 0.001
SE (0.008) (0.021) (0.008) (0.022) (0.022)

CDS −0.848∗∗ 4.390∗∗∗ −0.573∗ −5.238∗∗∗ 4.665∗∗∗

SE (0.383) (0.758) (0.337) (0.915) (0.822)

V IX −0.026∗∗∗ 0.009 −0.026∗∗∗ −0.035∗∗ −0.009
SE (0.009) (0.010) (0.008) (0.015) (0.011)

L−OIS 0.228 0.653∗∗ 0.088 −0.426 −0.514
SE (0.205) (0.324) (0.191) (0.436) (0.034)

OTR 2.634∗∗∗ −0.808 2.453∗∗∗ 3.441∗∗ 0.989
SE (0.531) (1.676) (0.563) (1.664) (1.762)

HPW −0.138∗∗∗ −0.244∗∗∗ −0.193∗∗∗ 0.106 0.299∗∗∗

SE (0.043) (0.064) (0.042) (0.069) (0.065)

R2 0.450 0.522 0.665 0.512 0.564

∗,∗∗,∗∗∗ represent statistical significance at the 10%, 5%, and 1% critical threshold, respectively.

44



Table A4: Decomposition of ILSBEI Regressions: Subsample
Table A4 presents decomposed versions of the results of regressions of the five-year ILSBEI spread on the
Euro-denominated five-year U.S. Treasury CDS spread (CDS), liquidity and slow-moving capital controls,
and growth in aggregate Treasury debt held by the public (G) presented in Table 2. Liquidity and slow-
moving capital controls are the level of the VIX index (V IX), the spread between LIBOR and OIS (L−OIS),
the spread between an off-the-run and on-the-run 10-year Treasury (OTR), and the noise measure of Hu,
Pan, and Wang (HPW ). Column (1) presents results for the ILS, column (2) for the ILS minus nominal
Treasury (TSY), column (3) for the breakeven inflation (BEI), column (4) for the nominal Treasury, and
column (5) for the inflation-protected Treasury (TIPS). Standard errors in parentheses are corrected for
heteroskedasticity via Newey-West with three lags. Data are sampled at the monthly frequency and cover
the period January, 2010 through December, 2020.

ILS ILS-TSY BEI TSY TIPS
G 0.004 0.017 0.002 −0.013 −0.015
SE (0.005) (0.014) (0.006) (0.015) (0.014)

CDS 1.337∗∗∗ 2.071∗∗∗ 1.046∗∗∗ −0.735 −1.780∗∗

SE (0.341) (0.761) (0.353) (0.770) (0.791)

V IX −0.027∗∗∗ 0.013 −0.027∗∗∗ −0.039∗∗∗ −0.012
SE (0.005) (0.009) (0.005) (0.011) (0.009)

L−OIS −0.071 −0.669 −0.083 0.598 0.681
SE (0.314) (0.440) (0.328) (0.617) (0.434)

OTR 0.913 −0.005 1.042∗ 0.918 −0.124
SE (0.557) (1.271) (0.604) (1.377) (1.256)

HPW −0.199∗∗∗ −0.480∗∗∗ −0.233∗∗∗ 0.281∗∗ 0.514∗∗∗

SE (0.066) (0.111) (0.067) (0.111) (0.115)

R2 0.538 0.366 0.513 0.271 0.343

∗,∗∗,∗∗∗ represent statistical significance at the 10%, 5%, and 1% critical threshold, respectively.
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Table A5: ILSBEI Regressions: Alternate Tenors
Table A6 presents the results of regressions of the ILSBEI spread on debt growth, CDS spreads and liquidity controls. Results
for the two-year, three-year, seven-year, and ten-year tenors are presented in columns 1 - 4, respectively. Data are sampled
at the monthly frequency over June, 2005 through December, 2020. First and second stage parameters are simultaneously
estimated via single-stage GMM with Newey-West-corrected standard errors.

2-Year 3-Year 7-Year 10-Year

ĈDS 1.097∗∗ 1.324∗∗∗ 0.868∗∗ 0.385
SE (0.521) (0.511) (0.341) (0.250)

V IX −0.002 −0.002 0.003 0.001
SE (0.003) (0.002) (0.002) (0.001)

L−OIS 0.218∗ 0.138∗∗ 0.002 −0.097∗∗

SE (0.115) (0.068) (0.046) (0.049)

OTR −0.381 0.053 −0.193 −0.636∗∗∗

SE (0.298) (0.182) (0.124) (0.129)

HPW 0.072∗∗∗ 0.070∗∗∗ 0.057∗∗∗ 0.064∗∗∗

SE (0.026) (0.012) (0.008) (0.009)

R2 0.608 0.811 0.698 0.572
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Table A6: ILSBEI Regressions: Alternate Tenors, post-Crisis
Table A6 presents the results of regressions of the ILSBEI spread on debt growth, CDS spreads and liquidity controls. Results
for the two-year, three-year, seven-year, and ten-year tenors are presented in columns 1 - 4, respectively. Data are sampled
at the monthly frequency over January, 2010 through December, 2020. First and second stage parameters are simultaneously
estimated via single-stage GMM with Newey-West-corrected standard errors.

2-Year 3-Year 7-Year 10-Year
G 0.001 0.002 0.001 −0.001
SE (0.003) (0.002) (0.001) (0.001)

CDS 0.013 0.009 0.316∗∗∗ 0.068
SE (0.184) (0.121) (0.067) (0.065)

V IX 0.000 −0.000 0.001 0.001
SE (0.003) (0.002) (0.001) (0.001)

L−OIS 0.014 0.026 −0.020 0.009
SE (0.141) (0.329) (0.044) (0.053)

OTR −0.368 0.050 −0.338∗∗ −0.505∗∗∗

SE (0.354) (0.235) (0.144) (0.111)

HPW 0.050 0.050∗∗∗ 0.030∗ 0.049∗∗∗

SE (0.031) (0.019) (0.016) (0.011)

R2 0.030 0.184 0.313 0.233
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Table A7: Instrumental Variables Regressions: Post-Crisis
Table A7 presents the results of instrumental variables regressions of the ILSBEI spread on CDS spreads and liquidity controls.
In the first stage, we regress the liquidity and slow-moving capital controls on the growth in Treasury debt and regress the CDS
spread on orthogonalized liquidity and slow-moving capital controls (where orthogonalization is denoted by superscript ⊥) and
growth in Treasury debt. Results are presented in Panel A. In the second stage, we regress the ILSBEI on the predicted CDS
spread and the orthogonalized controls, and present results in column (1) of Panel B. We repeat the second stage regressions
for the ILS in column (2), the nominal Treasury in column (3), and TIPS in column (4). Data are sampled at the monthly
frequency over January, 2010 through December, 2020. First and second stage parameters are simultaneously estimated via
single-stage GMM with Newey-West-corrected standard errors.

Panel A : First Stage Regressions

V IX L−OIS OTR HPW CDS
G 0.540∗∗∗ −0.002 0.006∗∗ 0.025 0.009∗∗

SE (0.094) (0.002) (0.003) (0.024) (0.004)

V IX⊥ −0.002
SE (0.003)

L−OIS⊥ 0.181
SE (0.114)

OTR⊥ 1.095∗∗∗

SE (0.240)

HPW⊥ −0.055∗∗∗

SE (0.021)

R2 0.259 0.011 0.240 0.063 0.523

Panel B: Second Stage Regressions

ILSBEI ILS ILS-TSY BEI TSY TIPS

ĈDS 0.536∗∗∗ 0.260 3.567 −0.276 −3.306 −3.031
SE (0.163) (0.811) (2.874) (0.915) (3.225) (2.833)

V IX⊥ 0.000 −0.029∗∗∗ 0.009 −0.029∗∗∗ −0.038∗∗∗ −0.009
SE (0.002) (0.008) (0.010) (0.007) (0.011) (0.010)

L−OIS⊥ 0.065 0.171 −0.294 0.106 0.465 0.359
SE (0.062) (0.404) (0.516) (0.394) (0.649) (0.492)

OTR⊥ 0.189 2.376∗∗∗ 2.263∗ 2.187∗∗∗ 0.113 −2.074∗

SE (0.157) (0.604) (1.163) (0.592) (1.280) (1.134)

HPW⊥ 0.018 −0.272∗∗∗ −0.594∗∗∗ −0.290∗∗∗ 0.322∗∗ 0.612∗∗∗

SE (0.017) (0.079) (0.147) (0.088) (0.132) (0.149)

R2 0.267 0.442 0.300 0.456 0.263 0.294

∗,∗∗,∗∗∗ represent statistical significance at the 10%, 5%, and 1% critical threshold, respectively.
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Table A8: TIPS pairs with the same maturity date

CUSIP Issuance date Maturity date Coupon rate
912810FR 2004-07-15

2025-01-15
2.375%

912828H4 2015-01-15 0.25%

912810FS 2006-01-15
2026-01-15

2%
912828N7 2016-01-29 0.625%

912810PS 2007-01-15
2027-01-15

2.375%
912828V4 2017-01-15 0.375%

912810PV 2008-01-15
2028-01-15

1.75%
9128283R 2018-01-15 0.5%

912810PZ 2009-01-15
2029-01-15

2.5%
9128285W 2019-01-15 0.875%

Table A9: Real cashflows of treasuries in the term structure model

Timeline t+ τ t+ n

No default
Nominal 0 e−πt+1−...−πt+n

TIPS 0 1

Default at Nominal e−δ
(c)
t+τ−πt+1−...−πt+τ 0

t+ τ TIPS e−δ
(c)
t+τ+(ρ∗−1)(πt+1+...+πt+τ ) 0

Liquidity at Nominal 0 e−πt+1−...−πt+n

t+ τ TIPS e−δ
(ℓ)
t+τ 0
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Figure A1: Mispricing between TIPS pairs
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Note: These series present the mispricing between TIPS that have the same maturity date but different
issuance dates. Each series is the price of a long-short portfolio of the two TIPS in the pair, and a short
position in a zero-coupon TIPS of the same time to maturity. The weights are computed such that the
aggregated portfolio yields zero cash flows if there is no default event. To compute the price of the zero-
coupon TIPS, we use the parameters of a Nelson-Siegel-Svensson curve fitted on a daily basis on TIPS coupon
bonds. To include errors resulting from smoothing the curve, we include confidence bands corresponding to
plus or minus 3bps on the smoothed zero-coupon yield.
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Figure A2: 6m OIS, inflation and liquidity proxy fitted values
The model is estimated with extended Kalman filter. Data range from November 2004 to December 2019.

The black solid line presents the observation data used as input for estimation. The grey dashed line presents

the fitted values produced through the filtered factors presented on Figure 5.
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Figure A3: Inflation-linked swaps fitted values
The model is estimated with extended Kalman filter. Data range from November 2004 to December 2019.

The black solid line presents the observation data used as input for estimation. The grey dashed line presents

the fitted values produced through the filtered factors presented on Figure 5.
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Figure A4: Nominal Treasuries fitted values
The model is estimated with extended Kalman filter. Data range from November 2004 to December 2019.

The black solid line presents the observation data used as input for estimation. The grey dashed line presents

the fitted values produced through the filtered factors presented on Figure 5.
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Figure A5: ILSBEI spreads fitted values
The model is estimated with extended Kalman filter. Data range from November 2004 to December 2019.

The black solid line presents the observation data used as input for estimation. The grey dashed line presents

the fitted values produced through the filtered factors presented on Figure 5.
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Figure A6: U.S. sovereign CDS spreads fitted values
The model is estimated with extended Kalman filter. Data range from November 2004 to December 2019.

The black solid line presents the observation data used as input for estimation. The grey dashed line presents

the fitted values produced through the filtered factors presented on Figure 5. The blue zones represent

approximate confidence intervals of measurement errors around the filtered CDS estimates. The latter are

measured with twice the CDS illiquidity series presented on the bottom panel. The latter is computed as the

scale of the inverse aggregated monthly depth (number of Contributors whose contributions were included

in the final composite value) of the 5y U.S. sovereign CDS.
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Figure A7: Credit Spreads
This graph presents the nominal and real credit spreads on panel (a) and (b), respectively, for maturities

ranging from 1y to 10y. Nominal spreads are obtained taking the difference between observed nominal

treasury yields and model-implied riskfree nominal rates. Real spreads are obtained taking the difference

between the observed TIPS rates and the model-implied riskless real yields. The model is estimated with

extended Kalman filter. Data range from November 2004 to December 2019.
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